A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling.

نویسندگان

  • Jeffery W Rankin
  • Richard R Neptune
چکیده

Previous studies have sought to improve cycling performance by altering various aspects of the pedaling motion using novel crank-pedal mechanisms and non-circular chainrings. However, most designs have been based on empirical data and very few have provided significant improvements in cycling performance. The purpose of this study was to use a theoretical framework that included a detailed musculoskeletal model driven by individual muscle actuators, forward dynamic simulations and design optimization to determine if cycling performance (i.e., maximal power output) could be improved by optimizing the chainring shape to maximize average crank power during isokinetic pedaling conditions. The optimization identified a consistent non-circular chainring shape at pedaling rates of 60, 90 and 120 rpm with an average eccentricity of 1.29 that increased crank power by an average of 2.9% compared to a conventional circular chainring. The increase in average crank power was the result of the optimal chainrings slowing down the crank velocity during the downstroke (power phase) to allow muscles to generate power longer and produce more external work. The data also showed that chainrings with higher eccentricity increased negative muscle work following the power phase due to muscle activation-deactivation dynamics. Thus, the chainring shape that maximized average crank power balanced these competing demands by providing enough eccentricity to increase the external work generated by muscles during the power phase while minimizing negative work during the subsequent recovery phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why do appropriate non-circular chainrings yield more crank power compared to conventional circular systems during isokinetic pedaling?

Several studies have been published on the use of eccentric and non-circular chainrings. The findings of these studies have, however, not been consistent. Despite the lack of consistent positive results in terms of physiological responses, a consensus appears to prevail that the improved mechanical effectiveness of the oval chainring may lead to performance enhancement (e.g. increased crank pow...

متن کامل

Adaptation of muscle coordination to altered task mechanics during steady-state cycling.

The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Alter...

متن کامل

Mss22022 1689..1697

BARRATT, P. R., T. KORFF, S. J. ELMER, and J. C. MARTIN. Effect of Crank Length on Joint-Specific Power during Maximal Cycling.Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1689–1697, 2011. Previous investigators have suggested that crank length has little effect on overall short-term maximal cycling power once the effects of pedal speed and pedaling rate are accounted for. Although overall maxi...

متن کامل

Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling

UNLABELLED During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. PURPOSE To determine the effect of changes in pedal speed (a marker ...

متن کامل

Fatigue during maximal sprint cycling: unique role of cumulative contraction cycles.

UNLABELLED Maximal cycling power has been reported to decrease more rapidly when performed with increased pedaling rates. Increasing pedaling rate imposes two constraints on the neuromuscular system: 1) decreased time for muscle excitation and relaxation and 2) increased muscle shortening velocity. Using two crank lengths allows the effects of time and shortening velocity to be evaluated separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 41 7  شماره 

صفحات  -

تاریخ انتشار 2008